Saturday, July 11, 2015

Wiring Monkey Brains Together Has a Point, Say Scientists

BRAINS WORK BETTER than computers. They’re faster, more creative, and (almost) always make sweeter party playlists. But if for some reason you really wanted a computer that could out-think a brain, maybe you could build one…from…brains. Multiple brains. Today, researchers at Duke University announced they have done nearly that, wiring animal brains together so they could collaborate on simple tasks. Network monkeys displayed motor skills, and networked rats performed computations.
http://techitm.blogspot.com
                                      Monkey Brains
That’s right. They made a botnet out of brains.
Leading the research was Miguel Nicolelis, a neurobiologist best-known of late for helping a 29-year-old paraplegic man kick off the 2014 World Cup with a brain-controlled exoskeleton. Nicolelis’ group has been wiring animal brains to machines since 1999, when they connected a rat to a robot arm. But this is the first time that anybody has directly wired together multiple brains to complete a task—a so-called brain-to-brain interface.
To build the monkey network, Nicolelis’ team first implanted electrodes in rhesus macaque brains, positioned to pick up signals from a few hundred neurons. Then they connected two or three of the macaques to a computer with a display showing a CG monkey arm. The monkeys were supposed to control the arm, directing it toward a target like a boat crew rows forward. When the monkeys got the arm to hit the target, the researchers rewarded them with juice. (“Each monkey had different juice preference,” says Nicolelis. “We had to do a preference test beforehand.”) To be clear, the monkeys don’t think “move my arm” and the arm moves—they learn what kind of thinking makes the arm move and keep doing that—because monkeys love juice.
The rat study was even weirder. For this one, the neuroscientists directly wired four rats’ brains together—using the implants to both collect and transmit information about neural activity—so one rat that responded to touch, for example, could pass on their knowledge of that stimulus to another rat. Then the researchers set the rats to a bunch of different abstract tasks—guessing whether it might rain from temperature and air pressure data, for example, or telling the difference between different kinds of touch-stimuli. The brain collectives always did at least as well on those tests as an individual rat would have, and sometimes even better. And in a successful effort to squidge people out, the researchers called these rat-borg collectives “organic computers” or, even worse, “brainets.”

That’s all well and good and mad-sciency, but what is it actually good for? Plenty of computer models predict the weather better than four networked rats. “Nobody would do word processing or perform a Google search on an organic computer,” Nicolelis says. But they might help accelerate rehab in people who have neurological damage. Right now, relearning motor skills after a stroke or brain injury is a long, painstaking process. Nicolelis wants to learn if a healthy person’s brain could help a stroke patient re-learn how to move a paralyzed leg faster than current therapies do.

0 comments:

Post a Comment

 
Copyright © . Tech IT M - Posts · Comments
Theme Template by Masum Rahman · Powered by Tech IT M